Rekenen/wiskunde - Wiskundig inzicht en handelen - kerndoel 23 - Groep 1 en 2 - Wat doen de kinderen


De leerlingen leren wiskundetaal gebruiken.


Groep 1 en 2


Wat doen de kinderen?

  • De kinderen beschrijven met de genoemde taalelementen hoeveelheden, vormen, structuren en handelingen (procedures), die ze zien, willen doen of gedaan hebben.
  • De kinderen vertellen in de kring wat ze gisteren gedaan hebben, of vanmorgen of vanmiddag gaan doen. Ze gebruiken hierbij allerlei begrippen rond tijd.
  • Ze werken met ontwikkelingsmateriaal waarin ze allerlei vormen moeten vergelijken of benoemen:  'plaatjes op volgorde leggen van klein naar groot, van dik naar dun van lang naar kort, van meer naar minder, vormen bij elkaar zoeken (alle rode vierkanten bij elkaar)
  • De kinderen bedenken zelf oplossingen voor het representeren van hoeveelheden, dingen, mensen. Bijvoorbeeld door te turven of een pictogram maken. Doordat ze zelf dergelijke representaties bedenken leren ze ook hoe ze die kunnen 'lezen'. Ook het representeren van hoeveelheden met een getal komt dan aan de orde, ook al zal dit niet voor iedereen meteen duidelijk zijn. Juist door er herhaaldelijk met anderen mee bezig te zijn leren ze van elkaar en gaan ze het zelf ook toepassen. Ze leggen aan elkaar uit wat ze bedoelen met de representaties.

Toelichting: Beschrijven

Kinderen leren om in allerlei situaties hoeveelheden, groottes, vormen, relaties en procedures ertussen te beschrijven. Daar gebruiken ze woorden bij, zoals telwoorden (drieënvijftig), maten (zeven en een halve meter), groter, kleiner, en dergelijke. Daarnaast gebruiken ze ook beeldtaal, zoals de getallenlijn, een rooster (tegelpleintje), pijlentaal en andere schematische weergaven om bijvoorbeeld structuur, verbanden of procedures weer te geven. Vooral grafieken en tabellen zijn bekende taalmiddelen om verbanden weer te geven. Bijvoorbeeld verbanden tussen 'prijs en aantal', of tussen 'afstand en tijd'. Bewerkingstekens en pijlentaal zijn geschikt om procedures weer te geven.

Toelichting: Eigenschappen en verbanden weergeven

Woordtaal en beeldtaal zijn middelen om de objecten los van de context waarin je ze gebruikt weer te geven. Zinnen als "zesendertig is groter dan vierentwintig" of "Een vierkant kun je in twee driehoeken verdelen" kun je gebruiken om een wiskundige samenhang voor te stellen, zonder dat die een fysieke werkelijkheid beschrijft. Het gaat niet om de werkelijkheid, maar om de eigenschappen ("het zijn er 36") en de verbanden ("36 is groter dan 24", of: 36 > 24).

Toelichting: Redeneren

Soms willen anderen of jijzelf zeker weten of het klopt wat je zegt. Dan moet je je beweringen onderbouwen met een redenering of je moet je berekening uitleggen. Het communicatief taalgebruik krijgt een logische functie: het nauwkeurig uitleggen. Dat uitleggen moet nauwkeurig en stap voor stap gebeuren. In dat uitleggen leren kinderen een logische redenering op te bouwen, die voor iedereen acceptabel is. Later kunnen ze voor zichzelf redeneringen te maken en te controleren.

Toelichting: Rekenen

In het rekenen hebben wiskundige notaties een heel bijzondere functie: Bij een berekening als 48 + 17 = 58 + 7 = 63 zet je opeenvolgende stappen op grond van geaccepteerde spelregels. Het gaat dan om een vormelijke procedure, die je uitvoert, op grond van de eigenschappen van getallen en bewerkingen. In de rekenkunde gaat het om het ontdekken en verbeteren van rekenprocedures. Vroeger was het cijferen de kroon van de rekenkunde (met de cijferalgoritmes kon je in principe alles correct uitrekenen). Tegenwoordig is de rekenkunde overgegaan in het vak algoritmiek van de informatica. Dat vak heeft de zakrekenmachine, het spreadsheet en programmeertalen voortgebracht.

Toelichting: Ontwikkeling in wiskundetaal

Kleuters gebruiken omgangstaal, waarin telwoorden en bijvoorbeeld woorden als 'groter en kleiner' een rol spelen. Leerlingen uit de bovenbouw beredeneren alledaagse problemen zoals "Wat is goedkoper: Een inktcartridge (voor de printer) van 16 ml voor € 17.50 of 22 ml voor € 22.50?". Bij het oplossen van dit probleem kunnen kinderen verschillende niveaus van wiskundige taal gebruiken, zoals bijvoorbeeld alledaagse taal waarin het gaat om "meer inkt voor hetzelfde geld", of een verhoudingstabel, een grafiek of een kruisvermenigvuldiging, waarin de verhoudingen tussen getallen centraal staan. Al naargelang de manier waarop de kinderen het probleem oplossen gebruiken ze in het denken en rekenen meer alledaagse of juist meer zuiver wiskundige begrippen en daarmee ook meer alledaagse of juist meer wiskundige taal.