Rekenen/wiskunde - Getallen en bewerkingen - kerndoel 26 - Groep 3 en 4 - Doorkijkje


De leerlingen leren structuur en samenhang van aantallen, gehele getallen, kommagetallen, breuken, procenten en verhoudingen op hoofdlijnen te doorzien en er in praktische situaties mee te rekenen.


Groep 3 en 4


Doorkijkje

Getallenlied

Het getallenlied (u kunt dit downloaden via de website) is een vrolijk, makkelijk mee te zingen lied. Het biedt veel mogelijkheden om met kinderen van groep 4 (en 3) naar aanleiding van de tekst na te denken en te redeneren over verschillende betekenissen en functies van getallen, over de (relatieve) waarde en grootte van getallen en over gebruik van getallen in diverse contexten uit het dagelijks leven. Dergelijke gesprekjes verdiepen en verbreden het getalbegrip van kinderen.

We geven enkele suggesties:

In het lied worden verschillende situaties genoemd, hoe het zou zijn als we zouden leven in een wereld zonder getallen.

  • Weet je nog welke situaties in het liedje worden genoemd?
  • Kun je zelf nog meer voorbeelden noemen waarbij het heel lastig zou zijn als je geen getallen hebt?
  • Wanneer heb je vandaag al getallen gebruikt of gezien, vanaf dat je wakker bent geworden (klok, producten op tafel, op weg naar school, in het lokaal)?
  • Zoek eens samen in tijdschriften, de krant of internet: is er een bladzijde waarop je geen getallen ziet staan? Zoek eens uit waarvoor de getallen worden gebruikt? Je kunt ook samen een poster maken van die getallen.

We gebruiken hele lage of kleine getallen maar ook hele hoge of grote getallen.

  • Welke kleine getallen ken je en welke grote getallen? Wat vind jij een klein getal? Vinden anderen dat ook? En wat vind je grote getallen? Waarom vind je dat?
  • Soms kan een getal zowel veel als weinig zijn: 5 knikkers hebben is niet zo veel, maar als je 5 fietsen hebt, dan is dat heel erg veel. Kun je zo zelf ook voorbeelden geven? Weet je ook een groot getal dat toch heel weinig kan zijn?

Niet alle getallen komen voor in bepaalde situaties. Bijvoorbeeld 100 staat niet op de klok en 23 staat niet op een verkeersbord.

  • Weet jij voorbeelden? Als ik bijvoorbeeld 11 zeg, waar kan dat bij horen, noem eens situaties. En wanneer kom je 11 eigenlijk niet tegen? Bedenk zelf eens voorbeelden.

Voor de betere kinderen.

  • Hoe zit dat eigenlijk met getallen en de telrij. Hoe weten we altijd welk getal op een getal volgt of eraan vooraf gaat? Hoe weten we dat zonder dat we de hele telrij uit ons hoofd kennen? Kun je uitleggen aan iemand die dat niet weet, hoe dit eigenlijk zit?
  • Hoe weten we of getallen dicht bij elkaar of ver van elkaar liggen? Noem eens voorbeelden.

In alle situaties gaat het er vooral om, om kinderen te laten nadenken over betekenissen, functies en (relatieve) waarde van getallen. Laat ze vooral voorbeelden noemen en op elkaar reageren, argumenten aandragen en uitleggen waarom iets wel of niet zo is. Dit vergroot hun getalbegrip.

De voorbeelden geven ook situaties en vragen, waarbij de kinderen van heel verschillend niveau samen kunnen nadenken of voorbeelden kunnen zoeken en kunnen redeneren op eigen niveau.

Getallenlied (pdf, 28 kB)

Bron: (2007). Rondje Rekenliedjes, groep 4. Tilburg: Zwijsen.


Toelichting: Aantallen of hoeveelheidgetallen

Getallen worden gebruikt om aantallen aan te geven.
Bijvoorbeeld:

  • 3 kinderen
  • 16.000.000 Nederlanders
  • 45 boeken

Toelichting: Volgorde (plaats in een rij)

De telwoorden staan in een vaste volgorde, waarin elk getal een vaste plaats heeft. Die volgorde kan gebruikt worden om de plaats van iets in een rij aan te geven. Bijvoorbeeld:

  • het derde kind in de rij;
  • het vierde huis in de straat;
  • de tweede prijs.

Toelichting: Hoeveelheden, groottes (maten) of tijd

Getallen worden gebruikt om maten weer te geven. In principe zegt een maatgetal hoe vaak een maateenheid in een grootte (of hoeveelheid) kan worden afgepast.
Bijvoorbeeld:

  • er gaat 45 liter in de tank;
  • er zit 450 gram jam in het potje;
  • er gaan 24 uur in een dag;
  • er kan 300.000 ton olie in de tanker.

Toelichting: Naamgetallen (en codes)

Voorbeelden van naamgetallen en codes zijn:

  • de rugnummers bij voetballers;
  • telefoonnummers en sofinummers, die enerzijds als naam; functioneren en anderzijds codering zijn;
  • nummers van buslijnen en treinen.

Toelichting: Ankergetallen

Ankergetallen zijn getallen die belangrijk zijn door hun plaats in de telrij of door hun speciale getalstructuur: 1, 5, 10, 25, 50, 75, 100, ... Ze spelen een belangrijke rol bij het inzicht in de wereld van de getallen, het schattend en het handig rekenen, het afronden en bij het onderling verbinden van gehele getallen, kommagetallen en breuken. Bijvoorbeeld:

  • Ordes van grootte:
    • 1, 10, 100, 1.000, 10.000, 100.000, 1.000.000 en eventueel verder;
    • 0,1, 0,01, 0,001, 0,000.1 en zo kleiner.
  • Bijzondere getallen tussen ordes van grootte: tussen 10 en 100 bijvoorbeeld:
    • 25, 50, 75, die op kwarten liggen;
    • 20, 40, 60, 80 die op vijfden liggen, zoals bij het geld,
      en eventueel
    • 331/3 en 662/3 die op derden liggen.
  • Deze zelfde soort ankergetallen heb je ook tussen 0 en 1, zoals bij:
    • 0,25 - 0,5 - 0,75.
  • Getallen en breuken in verband met de klok:
    • 1, 3, 6, 9, 12 en zo verder;
    • 60 en 3600;
    • de breuken 1/4, 1/2, 3/4.
  • Getallen in verband met de kalender:
    • aantallen dagen per jaar en per maand;
    • veelvouden van 7 en zo verder.
  • Belangrijke relaties zijn bijvoorbeeld:
    • 1/2 = 0,5 = 50% = 1 op 2;
    • 3/4 = 0,75 = 75% = 3 op 4;
    • 1/3 = 0,333 = 33,3% = 1 op 3.

Toelichting: Referentiegetallen

Referentiegetallen zijn getallen die voor iemand speciaal bekend zijn en een bijzondere betekenis hebben. Bijvoorbeeld de eigen leeftijd, lengte, gewicht, huisnummer, maar ook het gewicht van een olifant, de snelheid van een jachtluipaard, het aantal inwoners van Nederland en de eigen woonplaats, de omvang van de Nederlandse begroting op Prinsjesdag of de afstand van de Aarde tot de zon. Ieder kind ontwikkelt zijn eigen collectie referentiegetallen.

Referentiegetallen zijn belangrijk bij het betekenis geven aan getallen: betekenis in de zin van "weet ik voorbeelden bij duizend of een miljoen?", maar ook betekenis in de zin van "waar gebruiken mensen getallen voor?".

Toelichting: Rekengetallen

In een rekenformule als 45 + 17 is het niet aan de orde of het om een volgorde, aantal of maat gaat. Wat belangrijk is, is de manier waarop je met deze getallen kunt rekenen. In het rekengetal staat de getalstructuur ( ..., honderdtallen, tientallen, eenheden, tienden, hondersten, ...) centraal.

Toelichting: Eigenschappen van de bewerkingen

Eigenschappen van de optelling
Bij optellen gaat het om samenvoegen of toevoegen van aantalgetallen of maatgetallen.
Belangrijke eigenschappen van de optelling zijn bijvoorbeeld:

  • de verwisseleigenschap van de optelling: 3 + 4   =   4 + 3
  • de volgorde bij het optellen doet er niet toe: 8 + 6   =   8 + (2 + 4). Dat gebruik je bijvoorbeeld bij de splitsing bij de tien, 8 + (2 + 4) wordt dan (8 + 2) + 4 en dan doe je eerst 8 + 2 = 10 en dan 10 + 4 = 14
  • 9 + 7 = 10 + 6 of 10 + 7 - 1 (ééntje méér, ééntje minder)

Eigenschappen van de aftrekking
Bij aftrekkingen gaat het om het verminderen of het bepalen van verschil van aantalgetallen of maatgetallen.
Belangrijke eigenschappen van het aftrekken zijn bijvoorbeeld:

  • een aftrekking mag je niet omkeren: 7 - 4 ≠ 4 - 7
  • de volgorde doet er wel toe: (6 - 3) + 2 ≠ 6 - (3 + 2)
  • 15 - 9 = 16 - 10 of 15 - 10 + 1 (ééntje meer, ééntje minder)

Eigenschappen van de vermenigvuldiging
Bij vermenigvuldigingen gaat het om herhalingen, zoals vier groepjes van 5, vier staafjes van 5, vier sprongen van 5. Of "vier keer (telkens) 5".
Belangrijke eigenschappen van het vermenigvuldigen zijn bijvoorbeeld:

  • een vermenigvuldiging mag je verwisselen: 3 x 12 = 12 x 3
  • de volgorde bij het vermenigvuldigen doet er niet toe: 6 x 24 = (2 x 3) x 24 = 2 x (3 x 24) = 2 x 72 = 144
  • vermenigvuldigen met 10 is gemakkelijk: 10 x 256 = (256 tientallen) = 2560. Alles schuift een positie op, of kort gezegd: je zet er een nul achter.
  • 6 x 99 = 6 x 100 - 6 x 1 (één keer meer, één keer minder)
  • 8 x 25 = 4 x 50 (verdubbelen en halveren)
  • de verdeeleigenschap: 6 x 54 = 6 x 50 + 6 x 4, zoals in het onderstaande oppervlaktemodel te zien is.

Eigenschappen van de deling
Bij verdelen kan het gaan om verdelen (Van een banketstaaf van 25 cm snijden we stukjes van 3 cm. Hoeveel stukjes kunnen we maken?) en opdelen (in een kring van vier kinderen delen we 20 kaartjes uit door telkens een rondje te geven. Hoeveel krijgt ieder?).
Belangrijke eigenschappen van het delen zijn bijvoorbeeld:

  • een deling mag je niet omkeren: 12 : 3 ≠ 3 : 12
  • bij een deling doet de volgorde er wel toe: (24 : 6) : 2 ≠ 24 : (6 : 2)
  • delen door 10 is gemakkelijk. 2340 : 10 = (hoeveel tientallen zitten er in 2340) = 234. Je mag er een nul afhalen.
  • bij een deling geldt ook de verdeeleigenschap: 64 : 4 = 40 : 4 + 24 : 4