Zoeken
verfijn de resultaten
Achterover duikelen om duikelstang op borsthoogte met afzet op de kastkop:
- verschillende vormen van rollen en duikelen: voorover en achterover, op, aan en om toestellen;
- klauteren en klimmen op en aan toestellen;
- zwaaien op en aan toestellen.
Met hulp van andere kinderen en ondersteuning van de ringen op halve reikhoogte een salto achterover tot stand maken.
In een veld van 9 bij 7 meter met twee eindvakken van een meter over de hele breedte proberen 2 partijen van 4 spelers een bal 4 keer over te spelen en daarna een speler in het eigen eindvak aan te spelen. De andere partij probeert de bal te onderscheppen. Er wordt gespeeld met de loopregel dat de balbezitter maximaal twee passen mag maken daarna een stuit en dan weer twee passen.
Woordtaal en beeldtaal zijn middelen om de objecten los van de context waarin je ze gebruikt weer te geven. Zinnen als "zesendertig is groter dan vierentwintig" of "Een vierkant kun je in twee driehoeken verdelen" kun je gebruiken om een wiskundige samenhang voor te stellen, zonder dat die een fysieke werkelijkheid beschrijft. Het gaat niet om de werkelijkheid, maar om de eigenschappen ("het zijn er 36") en de verbanden ("36 is groter dan 24", of: 36 > 24).
Twee kinderen zitten op hun knieën op een mat en proberen een bal bij de ander af te pakken.
Eigenschappen van de optelling
Bij optellen gaat het om samenvoegen of toevoegen van aantalgetallen of maatgetallen.
Belangrijke eigenschappen van de optelling zijn bijvoorbeeld:
- de verwisseleigenschap van de optelling: 3 + 4 = 4 + 3
- de volgorde bij het optellen doet er niet toe: 8 + 6 = 8 + (2 + 4). Dat gebruik je bijvoorbeeld bij de splitsing bij de tien, 8 + (2 + 4) wordt dan (8 + 2) + 4 en dan doe je eerst 8 + 2 = 10 en dan 10 + 4 = 14
- 9 + 7 = 10 + 6 of 10 + 7 - 1 (ééntje méér, ééntje minder)
Eigenschappen van de aftrekking
Bij aftrekkingen gaat het om het verminderen of het bepalen van verschil van aantalgetallen of maatgetallen.
Belangrijke eigenschappen van het aftrekken zijn bijvoorbeeld:
- een aftrekking mag je niet omkeren: 7 - 4 ≠ 4 - 7
- de volgorde doet er wel toe: (6 - 3) + 2 ≠ 6 - (3 + 2)
- 15 - 9 = 16 - 10 of 15 - 10 + 1 (ééntje meer, ééntje minder)
Eigenschappen van de vermenigvuldiging
Bij vermenigvuldigingen gaat het om herhalingen, zoals vier groepjes van 5, vier staafjes van 5, vier sprongen van 5. Of "vier keer (telkens) 5".
Belangrijke eigenschappen van het vermenigvuldigen zijn bijvoorbeeld:
- een vermenigvuldiging mag je verwisselen: 3 x 12 = 12 x 3
- de volgorde bij het vermenigvuldigen doet er niet toe: 6 x 24 = (2 x 3) x 24 = 2 x (3 x 24) = 2 x 72 = 144
- vermenigvuldigen met 10 is gemakkelijk: 10 x 256 = (256 tientallen) = 2560. Alles schuift een positie op, of kort gezegd: je zet er een nul achter.
- 6 x 99 = 6 x 100 - 6 x 1 (één keer meer, één keer minder)
- 8 x 25 = 4 x 50 (verdubbelen en halveren)
- de verdeeleigenschap: 6 x 54 = 6 x 50 + 6 x 4, zoals in het onderstaande oppervlaktemodel te zien is.
Eigenschappen van de deling
Bij verdelen kan het gaan om verdelen (Van een banketstaaf van 25 cm snijden we stukjes van 3 cm. Hoeveel stukjes kunnen we maken?) en opdelen (in een kring van vier kinderen delen we 20 kaartjes uit door telkens een rondje te geven. Hoeveel krijgt ieder?).
Belangrijke eigenschappen van het delen zijn bijvoorbeeld:
- een deling mag je niet omkeren: 12 : 3 ≠ 3 : 12
- bij een deling doet de volgorde er wel toe: (24 : 6) : 2 ≠ 24 : (6 : 2)
- delen door 10 is gemakkelijk. 2340 : 10 = (hoeveel tientallen zitten er in 2340) = 234. Je mag er een nul afhalen.
- bij een deling geldt ook de verdeeleigenschap: 64 : 4 = 40 : 4 + 24 : 4
Meebewegen aan een zwaaiend toestel om de zwaai te vergroten of te onderhouden.