NAME: CODE

> **Physics Laboratory practical** Total marks [12.6]

Title: Determination of coefficient of viscosity of oil

Determination of coefficient of viscosity of fluids

Ball Drop Experiment

The measurement involves determining the velocity of a falling sphere

through a column of fluid of unknown viscosity. This is accomplished by

dropping a sphere through a measured distance of fluid and measuring

how long it takes to traverse the distance.

Materials

Thermometer

• Ball bearings of different diameters

Stopwatch

Meter ruler

Paper towel

Magnet

Oil

Theoretical aspects

Consider a spherical ball bearing of radius r and density ρ_s falling through

a column of viscous fluid of coefficient of viscosity η and density ρ_f as

illustrated in the figure below. The coefficient of viscosity is a measure of the degree of internal resistance to flow and shear.

Figure 1: showing a sphere of radius r falling through a column of fluid of density ρ_f . A and B marks the distance travelled by the sphere at terminal velocity v_t .

According to Newton's second law:

$$Net Force = ma$$

$$ma = W - (F_u + F_v)$$
 (1)

Where *m* is the mass of the sphere,

W=mg, is the weight of the sphere (ball bearing)

 $F_u = \frac{4}{3}\pi r^3 \rho_f g$ is the upthrust = weight of the fluid displaced

 $F_v = 6 \pi r \eta v$ is the viscous force (of a sphere of radius r) proportional to the velocity v of the ball (Stoke's Law).

Initially the ball has some downward acceleration until the sphere acquires terminal velocity v_t ($v_t = \frac{s}{t}$ where \boldsymbol{s} is the distance travelled in time \boldsymbol{t}), when there is no more acceleration and hence the net force is zero. Equation (1) becomes

$$mg = F_u + F_v$$

$$\frac{4}{3}\pi r^3 \rho_s g = \frac{4}{3}\pi r^3 \rho_f g + 6\pi r \eta v_t$$
 (2)

Or
$$v_t = \frac{2}{9} \frac{r^2}{\eta} g \left(\rho_s - \rho_f \right)$$
 (3)

Note that s is the distance between A and B and t is the time the ball takes to fall between A and B.

Equation (3) can be modified to:

$$v_t = \frac{1}{18} \frac{d^2}{\eta} g \left(\rho_s - \rho_f \right) \tag{4}$$

Where

d = diameter of sphere (=2r)

 ρ_s = density of sphere = m/V = (mass of sphere/volume of sphere)

 ρ_f = density of fluid

g = acceleration of gravity = 9.81 m/s^2

 v_t = Terminal Velocity = s/t = (distance sphere falls)/(time of it takes to fall)

Procedure

Proceed as follows.

- Measure the vertical distance s between points A and B marked on the cylindrical tubes.
- 2. Drop one of the ball bearings into the fluid (ensuring that the ball bearing does not touch the wall of the cylinder during its motion between A and B)
- 3. Measure the time *t* taken by the sphere to travel the distance *s* between A and B and record it in the provided table.
- 4. Without removing the ball bearing, repeat steps 2 and 3 above using other bearings of the same diameter to have three values of time.
- 5. Repeat steps 2 to 4 for the other 4 sizes of ball bearings.

Results and analysis

Note the following:

```
ho_f = 871.4 \text{ kg/m}^3

ho_s = 7717 \text{ kg/m}^3

ho_s = 0.4 \text{ m} (distance between A and B)
```

Calculate the average time, d^2 and v_t for each set of ball bearings, complete Table 1.

Table 1: experimental results.

[2.	41
-----	----

Rall diameter			Diameter squared	Time taken to fall distance <i>l</i>				Terminal velocity
#	d (mm)	d (m)	d ² (m ²)	t ₁ (s)	t ₂ (s)	t ₃ (s)	Average time (s)	v_t (m/s)
1								
2								
3								
4								

1. Plot a graph of v_t vs d^2 ,

- [5.2]
- 2. Use the graph to determine the viscosity of the oil with the appropriate units. [5]

MARKING SCHEME Solution

Completed table

Note the following:

 $\rho_f=871.4~{\rm kg/m^3}$

 $\rho_s = 7717 \text{ kg/m}^3$

Temperature before T_b :

T = [0.15]

Distance *l*

 $l \approx 0.500 \text{ m}$ [0.25]

Drawing a sketchof measurement [0.75]

Temperature before T_a :

 $T_a = [0.15]$

Points for the measurements and calculations

Table III-1

	d	d	d^2	t_1	t_2	<u>t</u> ₃		v_t
#	(mm)	(m)	(m²)	(s)	(s)	(s)	Average time (s)	(m/s)
1	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1
2	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1
3	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1
4	0,25	0,05	0,05	0,25	0,25	0,25	0,05	0,1

Subtraction (per column) 0.2 if out of range

	Range d (mm)		
d (mm)	(mm)	d _{min} (mm)	d _{max} (mm)
4,50	0,4	4,30	4,70
5,00	0,4	4,80	5,20
6,00	0,4	5,80	6,20
7,00	0,4	6,80	7,20

III-2 Plot of v_t vs. d^2	[3.0]
L L	

Marks allocation:

i)	x and y axis labelling	[1.0]
	(for each axis Quantity (0.25) & Uni	t (0.25))
ii)	Scale of the graph	[1.0]
	0.5 for each axis (uniform & size)	
iii)	Plotting of points (0.1 for each)	[0.4]
iv)	Drawing straight line best of fit	[0.6]

III-3 Determining the slope of the line

[1.5]

- i. Mark the points on the line that are used
- [0.5]

ii. Calculation of the slope

[0.5]

iii. Determining the correct unit

[0.5]

III-4 Derive and show analytical expression for C

[1.0]

i.

III-5 Determination of viscosity of oil

[1.5]

Mark allocation

i) Determination of coefficient of viscosity.

From
$$v_t = \frac{1}{18} \frac{d^2}{\eta} g \left(\rho_s - \rho_f \right)$$

$$slope = \frac{g}{18} \frac{(\rho_s - \rho_f)}{\eta}$$
 or $slope = \frac{c}{\eta}$ [0.5]

[0.5]

[0.5]

$$\eta = \frac{g}{18} \frac{(\rho_s - \rho_f)}{slope} \to \frac{\left[\frac{m}{s^2}\right] * \left[\frac{kg}{m^3}\right]}{\left[\frac{m/s}{m^2}\right]} = \left[\frac{Ns}{m^2}\right] = Pa.S$$